119 research outputs found

    Industrial practitioners' mental models of adversarial machine learning

    Get PDF
    Although machine learning is widely used in practice, little is known about practitioners' understanding of potential security challenges. In this work, we close this substantial gap and contribute a qualitative study focusing on developers' mental models of the machine learning pipeline and potentially vulnerable components. Similar studies have helped in other security fields to discover root causes or improve risk communication. Our study reveals two facets of practitioners' mental models of machine learning security. Firstly, practitioners often confuse machine learning security with threats and defences that are not directly related to machine learning. Secondly, in contrast to most academic research, our participants perceive security of machine learning as not solely related to individual models, but rather in the context of entire workflows that consist of multiple components. Jointly with our additional findings, these two facets provide a foundation to substantiate mental models for machine learning security and have implications for the integration of adversarial machine learning into corporate workflows, decreasing practitioners' reported uncertainty, and appropriate regulatory frameworks for machine learning security

    Calomplification — the power of generative calorimeter models

    Get PDF
    Motivated by the high computational costs of classical simulations, machine-learned generative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distribution, such that a generated sample outperforms a training sample of limited size. This kind of GANplification has been observed for simple Gaussian models. We show the same effect for a physics simulation, specifically photon showers in an electromagnetic calorimeter

    Drama, performance and touch in the medieval convent and beyond

    Get PDF
    In this analysis we explore the sensory performances of the performer, rather than the spectator, in medieval convent drama, particularly the tactile experiences of clothing, props, wigs, and beards worn by female performers presenting male and female characters

    Beyond the Shade of the Oak Tree: The Recent Growth of Johannine Studies

    Full text link
    The recent growth within Johannine studies has developed as a result of several factors. First, the discovery of the Dead Sea Scrolls led to an appreciation of the Jewishness of John’s origin. Second, new approaches to John’s composition have emerged, followed by a larger set of inquiries as to the Johannine tradition’s relation to parallel traditions. This has been accompanied by a fourth interest: the history of the Johannine situation. Fifth, new literary studies have posed new horizons for interpretation, and sixth, theories continue to abound on the identity of the Beloved Disciple. A seventh development involves new ways of conceiving John’s theological features, leading to an eighth: reconsidering John’s historical features and re-envisioning its historical contributions in new perspective

    Analysis methods for the first KATRIN neutrino-mass measurement

    Get PDF
    We report on the dataset, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the ÎČ-decay kinematics of molecular tritium. The source is highly pure, cryogenic T2 gas. The ÎČ electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts ÎČ electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology

    Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment

    Get PDF
    The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium ÎČ\beta-decay endpoint region with a sensitivity on mÎœm_\nu of 0.2 \,eV/c2^2 (90% CL). For this purpose, the ÎČ\beta-electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6 \,keV. A dominant systematic effect of the response of the experimental setup is the energy loss of ÎČ\beta-electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the \linebreak energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T2_2 gas mixture at 30 \,K, as used in the first KATRIN neutrino mass analyses, as well as a D2_2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of σ(mÎœ2)<10−2 eV2\sigma(m_\nu^2)<10^{-2}\,\mathrm{eV}^2 [arXiv:2101.05253] in the KATRIN neutrino-mass measurement to a subdominant level.Comment: 12 figures, 18 pages; to be submitted to EPJ

    Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c2^{2}, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment’s windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium—one of the key parameters required in the derivation of the electron neutrino mass. The concentrations cx_{x} for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10−3^{-3} or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, ΔT, is derived with precision of <10−3^{-3} and trueness of <3 × 10−3^{-3}, being within and surpassing the actual requirements for KATRIN, respectively

    Direct neutrino-mass measurement with sub-electronvolt sensitivity

    Get PDF

    Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign

    Get PDF
    We present the results of the light sterile neutrino search from the second Karlsruhe Tritium Neutrino (KATRIN) measurement campaign in 2019. Approaching nominal activity, 3.76×106 tritium ÎČ-electrons are analyzed in an energy window extending down to 40 eV below the tritium end point at E0=18.57  keV. We consider the 3Îœ+1 framework with three active and one sterile neutrino flavors. The analysis is sensitive to a fourth mass eigenstate m24â‰Č1600  eV2 and active-to-sterile mixing |Ue4|2≳6×10−3. As no sterile-neutrino signal was observed, we provide improved exclusion contours on m24 and |Ue4|2 at 95% C.L. Our results supersede the limits from the Mainz and Troitsk experiments. Furthermore, we are able to exclude the large Δm241 solutions of the reactor antineutrino and gallium anomalies to a great extent. The latter has recently been reaffirmed by the BEST Collaboration and could be explained by a sterile neutrino with large mixing. While the remaining solutions at small Δm241 are mostly excluded by short-baseline reactor experiments, KATRIN is the only ongoing laboratory experiment to be sensitive to relevant solutions at large Δm241 through a robust spectral shape analysis
    • 

    corecore